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ABSTRACT

Current state-of-the-art (SOTA) methods for audio-driven character animation
demonstrate promising performance for scenarios primarily involving speech and
singing. However, they often fall short in more complex film and television pro-
ductions, which demand sophisticated elements such as nuanced character inter-
actions, realistic body movements, and dynamic camera work. To address this
long-standing challenge of achieving film-level character animation, we propose
an audio-driven model, which we refere to as Wan-S2V, built upon Wan. Our
model achieves significantly enhanced expressiveness and fidelity in cinematic
contexts compared to existing approaches. We conducted extensive experiments,
benchmarking our method against cutting-edge models such as Hunyuan-Avatar
and Omnihuman. The experimental results consistently demonstrate that our ap-
proach significantly outperforms these existing solutions. Additionally, we ex-
plore the versatility of our method through its applications in long-form video
generation and precise video lip-sync editing.

1 INTRODUCTION

Audio-driven human video generation has made significant progress recently, largely thanks to the
development and application of Diffusion models|Ho et al.|(2020). Beginning with UNet-based text-
to-image models and progressing to the latest DiT-based text-to-video models |Wan et al.| (2025);
Kong et al.|(2025), the quality of visual generation has also dramatically improved. Consequently,
audio-driven models leveraging these latest DiT-based video foundation models are garnering in-
creasing research attention |Lin et al.| (2025); (Chen et al.| (2025); Wang et al.| (2025). However,
influenced by prior work, current research primarily confines audio-driven models to single-scene
human video generation, or even solely to single-character video driving. Nevertheless, in more
complex scenarios such as film and television productions or multi-person scenes, audio-driven
models still face numerous challenges. For instance, key questions arise: How can audio control
a character while ensuring their movements are consistent and coordinated with the overall scene?
How can person interactions be managed by audio and prompt jointly? This paper primarily focuses
on audio-driven human generation in such complex scenarios as film and television, aiming to en-
hance the efficacy of audio-driven generation through comprehensive data acquisition, robust model
training, and clever yet effective inference strategies.

Achieving film-quality audio-driven video, we contend, requires simultaneously leveraging the dis-
tinct yet complementary capabilities of text and audio. From a practical user perspective, text is
optimally utilized for delineating the overarching dynamics of the video, including cinematic cam-
era movements, comprehensive character trajectories, and interactions between entities. Audio,
conversely, excels at dictating minute details such as character expressions and localized actions,
including precise hand gestures and head orientation. Firstly, we construct our audio-driven model
by leveraging the latest Wan text-to-video foundation modelWan et al.[(2025). Our aim is to inte-
grate audio-driven capabilities while preserving its inherent text control. Crucially, to ensure our
model maintains text-control fidelity during training, we utilized Qwen-VL’s Bai et al.|(2025) video
understanding capabilities for detailed textual captioning of videos, with a particular emphasis on
descriptions pertinent to character motion. To effectively support generation in complex scenarios,
such as film and television productions, we curated film and television-related audio-visual data
from existing open-source datasets and augmented it with our own internally collected dataset of
talking and singing character videos to form our comprehensive training dataset. While some exist-



ing methods attempt to reduce training complexity by training only partial network parameters, this
often leads to conflicts between text and audio control. We hypothesize that a larger model capacity
is more conducive to learning superior and harmonious text and audio control, thereby mitigating
such conflicts. To facilitate large-scale, full-parameter training, and drawing inspiration from estab-
lished parallel training paradigms for video foundation models, we implemented a hybrid training
strategy combining FSDP [Zhao et al.| (2023) with Context Parallel, significantly accelerating the
training process. Furthermore, to ensure enhanced stability and performance, we employed a multi-
stage training regimen. This includes pre-training of the audio processing modules, followed by a
comprehensive pre-training phase on the entire dataset, and subsequent fine-tuning on high-quality
data. Collectively, these systematic strategies enable us to develop a robust and efficient audio-driven
human video generation model.

Long video generation is crucial for generating videos in film and television scenarios. However, it
faces challenges in maintaining stable details and consistency in scenes and even motion. Audio-
driven methods like Tian et al.|(2024) have attempted to use Motion Frames to maintain consistency
between multiple clips, but an excessive number of motion frames can drastically increase compu-
tational complexity. This leads to a relatively limited number of motion frames, making it difficult
to maintain long-term video stability in film and television scenarios. To address this, we introduce
a approach similar to |Zhang & Agrawala (2025)), which effectively reduces the token count of Mo-
tion Frames by employing different token compression ratios at different times. This ensures the
incorporation of more Motion Frames, thereby enabling the generation of more stable long videos.

To train our model, we constructed a dataset containing over clips, based on both publicly available
video datasets and our own collected video data. This comprehensive dataset includes videos from
solo scenarios focusing on human speech and singing, as well as complex character videos from
film and television dramas.

Our main contributions are as follows:

* Extending Audio-Driven Generation to Complex Scenarios: We go beyond talking
heads by enabling the creation of natural and expressive character movements in diverse
and challenging scenes, incorporating both text-guided global motion control and audio-
driven fine-grained local motion.

* Long Video Stabilization and Efficient Model Variants: We tackle the challenges of
long video generation through optimized motion frame token reduction.

* Comprehensive Training DataWe leverage a large-scale, diverse dataset to train our
model and validate the effectiveness of our model through extensive experiments.

2 DATA PROCESSING PIPELINE

Data Collection. Human-driven narratives constitute the core element of video content. Our ob-
jective is to identify videos featuring one or more human characters engaged in specific activities.
Specifically, we adopted a two-pronged strategy:

Automated screening of large-scale datasets. We collected videos from open source video datasets
such as|Li et al.|(2024) and Wang et al.| (2024), followed by an initial coarse filtering process that
detected the presence of human-related descriptions in video captions. It is worth noting that the cap-
tions provided by these datasets are inherently coarse-grained and often fail to capture the nuanced,
dynamic activities performed by characters (e.g., complex gestures, interactions, or context-specific
behaviors). To address this limitation, we developed a specialized captioning pipeline designed to
focus on human motion patterns, which will be elaborated in subsequent subsections.

Manual curation of high-quality samples. Complementing the above approach, we manually se-
lected videos containing intentional and complex human activities (e.g. speaking, singing, dancing)
from public accessible sources. This dual methodology yielded an initial video pool comprising
millions of human-centric video samples, forming the foundation for our dataset.

Pose Tracking and Fine-grained Filtering. From the initial human-centric video pool, the 2D pose
of each character is tracked via VitPose|Xu et al.|(2022) and converted to DWPose|Yang et al.|(2023)).
This pose information serves two critical functions: (1) As a multi-modal control signal: The tracked
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Figure 1: Overview of our hierarchical human-centric video filtering pipeline.

pose is integrated as an optional multi-modal control signals for our human-centric video genera-
tion model, enabling precise temporal alignment with human actions. (2) For dataset refinement:
The pose data is further leveraged to implement a fine-grained screening process. Specifically, we
filtered out videos where characters occupy only a negligible portion in either temporal or spatial
dimensions. Additionally, to ensure the model can learn audio-driven facial expressions from the
given audio signals, we retained only videos containing consistent and visible human faces through-
out the sequence. Complementing the pose-based screening, we employed pre-trained video quality
assessment models to evaluate motion extent, aesthetic appeal, and visual clarity. Videos were sub-
sequently filtered based on these quantitative metrics to maintain high data quality. Furthermore,
to address audio-visual alignment challenges, we utilized Light-ASD |Liao et al.| (2023) to detect
and exclude videos where (1) the audio is not synchronized with the active speaker, or (2) no active
speaker exists in the scene.

Video Quality. To comprehensively evaluate video quality from multiple perspectives, we employ
the following five metrics: (1) Clarity Assessment: We utilize the Dover metric |Wu et al.| (2023)
to quantify video clarity, which measures the perceptual sharpness of visual content. (2) Motion
Stability Analysis: To evaluate temporal coherence, we predict optical flow using the UniMatch
framework |Xu et al.|(2023) and calculate a motion score. This helps identify and filter videos with
excessive subject/background movement that could compromise visual quality. (3) Facial/Hand
Sharpness Verification: A Laplacian operator is applied specifically to human faces and hands within
the video frames. This technique enables the detection and exclusion of videos containing blurred
facial features or hand regions. (4) Aesthetic Quality Evaluation: We incorporate an improved
aesthetic predictor|Schuhmann| (2022) to assess visual appeal based on human aesthetic preferences,
ensuring the output meets subjective quality standards. (5) Subtitle Occlusion Detection: An OCR-
based detector is applied to identify and exclude cases where subtitles might occlude faces or hands
in video.

Dense Video Caption. A detailed and accurate video caption facilitates the alignment of the gener-
ation model with the input prompt. We used QwenVL2.5-72B Bai et al.|(2025)) to generate captions
for the videos, instructing the model to describe the following key aspects in details: (1) Camera an-
gles, such as straight-on, overhead, low-angle, wide shot, medium shot, and close-up; (2) Physical
appearance features (e.g., clothing and accessories) and actions, broken down into specific move-
ments of the subject; (3) Main features of the background environment, including architectural style,
color schemes, and greenery, among others. At the same time, we required the model to avoid sub-
jective evaluations and emotional interpretations, which are often trivial to generating the expected
video content
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Figure 2: Overview of our pipeline.

3 MODEL ARCHITECTURE

Given a single reference image, an input audio and a prompt to describe the video content, we could
generate the video synchronized with the audio while preserving the content in the reference image
(not start from the image). As shown in Fig[2] our work is fed with multi-frame noise latent input,
and tries to denoise them to the consecutive video frames during each timestep.

During the training, the RGB target frames X € R*H>*Wx3 are encoded by 3D VAE into latent
presentation zo € Rf*"X%X¢ assioning a continuous time step ¢ € [0, 1], the noise ¢ are added to
T( to get noisy latent x; according to Flow Matching introduced by |Lipman et al.|(2023)):

zy =te+ (1 —1t)xo

Input the noisy representation z;, the target of the model is to predict the velocity fl—f = € — 9.
During the inference, the model recoveres the noisy input x; into zo under the condition of the

reference frame, motion frames, audio input and prompt.

The reference image, the target frames and the motion frames following Tian et al.| (2024)) are fed
into 3D VAE to down-sample the video spatially and temporally, getting the latent representation
of the frames. All latent frames are then patchified and flattened, they are concatenated to be a se-
quence of visual tokens. The motion frames are optional, they provide the condition of the previous
information, making the generated clips continuous. In order to generate long-term consistent video
frames, it is necessary to obtain more historical information, since directly flatten the motion latent
token could introduce more computational load. The motion latent is further compressed by Frame
Pack module introduced by |Zhang & Agrawalal(2025), which compress the earlier frames in higher
compressibility.

As illustrated in Figure [3] the raw audio waveform is first encoded using Wav2Vec by [Schneider,
et al.| (2019). To comprehensively capture the audio features, we adopt the weighted average layer
proposed by [Tian et al.| (2024), which combines features from different layers through learnable
weights. This approach effectively integrates shallow-level rhythmic and emotional cues with deep-
level lexical content features extracted by Wav2Vec, thereby enhancing synchronization with com-
plex audio signals such as singing or expressive speech. The resulting frame-wise audio features
are then compressed along the temporal dimension using multiple causal 1D convolutional mod-
ules. This process generates audio features of the 4 th latent frame a; € R/***¢ that are temporally
aligned with the video latent frames, where ¢ denotes the number of audio tokens per latent frame.

The latent audio features a are passed into each Audio Block, where the noisy latent tokens x; €

R xhxw)xe gre divided into segments Zf / xy; € RPXWIXe glong the temporal dimension. To
reduce computational overhead, attention is calculated between a; and xy;, rather than performing
full 3D attention between visual tokens and audio tokens. This approach ensures that the audio
features and visual tokens are naturally synchronized.
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Figure 3: The pipeline of the audio injection.

4 IMPLEMENTATION

To train our Audio-to-Video model, we adopted a hybrid-parallel training scheme which combines
FSDP and context parallelism, enabling large-scale, full-parameter model training. To support dif-
ferent resolutions, we support the training of variable-length video data. Our model is trained based
on a pre-trained Wan model and is designed with a three-stage training process, including: audio
encoder training, training on speech videos, training on film and television + speech videos, and
finally, high-quality SFT (Supervised Fine-Tuning) stage training.

4.1 PARALLEL STRATEGY

To efficiently train our large model, a hybrid parallel training strategy is employed. This involves
combining Fully Sharded Data Parallelism (FSDP) |Zhao et al| (2023) with Context Parallelism.
Initially, FSDP is leveraged to shard the model’s parameters across 8 GPU cards within a single
node, enabling the training of our Wan-S2V-14B model while utilizing 80GB of memory per GPU.

Subsequently, for parallel computing, we implement a Context Parallelism scheme, combining
RingAttention and Ulysses similar to [Fang & Zhao| (2024). This integrated approach, executed
on 8 GPUs within a single node, allows us to achieve near-linear speedup, significantly reducing
the single training iteration time from ~100 seconds to ~12 seconds. This robust setup ultimately
supports the training of models exceeding 16B parameters, including our audio encoder and cross-
attention components, enabling high-resolution video training up to 48 frames at 1024 x 768 reso-
lution (Height x Width) on 8 GPUs.

To accommodate diverse output resolutions and optimize training, a variable-length resolution train-
ing method is implemented. This method uses the token count, determined after the patchify oper-
ation, as a key metric. A maximum allowable token limit, M, is established. For videos exceeding
this limit, resolution resizing or cropping is applied to reduce the token count to M or below. Videos
with token counts already below M are used directly for model training without any modifications.

5 EXPERIMENTS

Following the data construction pipeline detailed in Section 3, we meticulously filtered data from the
OpenHumanViD |Li et al.| (2024) dataset and integrated it with our self-constructed internal talking
head dataset to form our comprehensive training set.

We constructed the audio-driven human video generation model on Wan-14B referred to as Wan-
S2V-14B.



In comprehensive comparisons against existing state-of-the-art audio-driven video generation mod-
els, both quantitative metrics and visual results consistently demonstrate that our method surpasses
current approaches in terms of expressiveness and the realism of generated content.

5.1 QUALITATIVE EVALUATION

Comparison with SOTA

A comparative study was conducted between our method and two existing DiT-based audio-driven
video generation models, Ominihuman proposed by |Lin et al.|(2025) and Hunyuan-Avatar proposed
by [Chen et al. (2025), revealing the superior capabilities of our approach. Figure [ illustrates
these findings: Hunyuan-Avatar struggles with facial distortion and identity shifts during large-scale
movements, while our model excels at maintaining identity consistency even amidst highly dynamic
motion. Additionally, Ominihuman’s generated results are characterized by very small motion am-
plitudes, often closely resembling the reference image’s static pose. Our model, conversely, is capa-
ble of generating a significantly wider range of motion, thus offering enhanced diversity in output.

Consistency of Long Term Generation

Compared to previous methods that typically generate short, isolated video clips focused on solo
speaking scenarios, film-grade video generation demands long-term consistency across multiple
generated clips, e.g motion, camera movement and identity preservation. Our method utilizes
FramePack to encode more motion frames, enabling the model to capture long-term temporal de-
pendencies and, intuitively, achieve better preservation of coherent temporal information.

As shown in [5} when generating a scene in which the target is required to maintain consistent motion
(e.g., a train moving in a coherent direction), OmniHuman fails to preserve the motion trend across
multiple clips, while our method successfully maintains consistency in both the direction and speed
of the train.

When continuing to generate a new video clip following previously generated ones, the prior clips
are used as motion frames. By utilizing FramePack to encode a larger number of motion frames, our
method not only preserves the overall motion trend but also helps maintain element identity across
clips. For instance, as shown in [f] the generated character picks up a piece of paper that visually
matches the one from the previous clip. In contrast, without FramePack, the appearance of the same
object may drift significantly.

5.2 QUANTITATIVE EVALUATION

We conduct quantitative comparisons on the EMTD dataset proposed by Meng et al.| (2024),which
primarily consists of solo-talking videos, evaluating several open-source audio-animation methods.
This includes EchoMimicV2, developed by Meng et al. (2024), and MimicMotion from [Zhang
et al.| (2024). Both of these approaches rely on pre-extracted pose sequences to animate images.
Additionally, we compare our work with EMO2, introduced by [Tian et al.|(2025a), which employs
a two-stage process: generating partial hand motion from audio and subsequently animating the
character using both the audio and the generated motion. We also include recent audio-driven DIT-
based methods in our comparisons, such as FantasyTalking|Wang et al.| (2025) and Hunyuan-Avatar.

To demonstrate the superiority of our proposed method, we evaluate the models using several met-
rics. We employ Fréchet Inception Distance (FID) Heusel et al.| (2017), SSIM [Wang et al.| (2004),
and PSNR |Horé & Ziou| (2010) to assess the quality of the generated frames. Fréchet Video Dis-
tance (FVD)|Unterthiner et al.| (2019) is used to gauge the overall coherence of the generated videos.
To evaluate identity consistency, we calculate the cosine similarity (CSIM) between the facial fea-
tures of the reference image and the generated video frames. We also utilize Sync-C, as proposed
by |Chung & Zisserman| (2017), to assess the synchronization quality between lip movements and
audio signals. Furthermore, we measure Hand Keypoint Confidence (HKC) to evaluate the quality
of hand representation in generated frames, while Hand Keypoint Variance (HKV) serves as an indi-
cator of the richness of hand motion. Additionally, EFID proposed by Tian et al.|(2025b)) is adopted
to quantitatively assess the divergence in expressions between the synthesized videos and those in
the ground truth dataset.
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Figure 4: Qualitative comparison of generated human videos. The leftmost column displays the
reference image. Hunyuan-Avatar (top row) often suffers from facial distortions and inconsistent
identity during large movements. Ominihuman (middle row) typically generates results with a lim-
ited range of motion, largely adhering to the pose of the reference image. In contrast, our method
(bottom row) achieves superior performance in both motion dynamics and identity consistency.
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Table 1: Quantitative comparisons with SOTA.
Method FID] FVD] SSIMt PSNRfT Sync-Ct EFID] HKCt HKV?T CSIMt

EchoMimicV2 3342 217.71 0.662 18.17 444 1.052 0425 0.150 0.519
MimicMotion ~ 25.38 24895 0.585 17.15 268 0.617 0356 0.169 0.608

EMO2 27.28 12941 0.662 17775 458 0218 0553 0.198  0.650
FantasyTalking 22.60 178.12 0.703 19.63 3.00 0366 0.281 0.087 0.626
HY-Avatar 18.07 14577 0.670 18.16 471 0.7082 0379 0.145 0.583
Ours 15.66 129.57 0.734 2049 451 0283 0435 0.142 0.677

As illustrated in [I] our method surpasses the others in terms of frame quality, as indicated by im-
proved image metrics (FID, SSIM, PSNR). Additionally, it demonstrates a clear advantage in video
quality assessment, with a lower FVD score. In terms of detail generation, our approach produces
clearer and more accurate hand shapes, as reflected by the higher HKC score. Furthermore, it gener-
ates more vivid and diverse hand motions, indicated by a higher HKV value. It is worth noting that
EMO?2 achieves highest HKC and HKV scores. This can be attributed to the fact that EMO2 gen-
erates frames conditioned on pre-generated motion sequences, allowing for better control over hand
motion diversity. Moreover, the use of MANO contributes to its superior performance in HKC com-
pared to other methods. On the other hand, HY-Avatar tends to produce characters with “poker-face”
expressions, which results in a higher EFID compared to other methods.

6 CONCLUSION

This paper presented significant advancements in audio-driven human video generation, specifically
addressing the complexities of film and television scenarios. We demonstrated the crucial synergy
between text for global motion control and audio for fine-grained character expressions, leading to
more expressive and consistent video generation. Our comprehensive approach, from data to training
and optimized inference, aims to make high-quality audio-driven video synthesis more accessible
and practical. Despite this progress, truly complex film and television challenges, such as nuanced
multi-person interactions and precise camera control driven solely by audio, remain formidable.
Wan-S2V is the first in our Vida research series. We envision this series, including future work
on advanced character control and dynamic dancing generation, will foster continued research and
development, pushing the boundaries of human-centric video synthesis.
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